Splittable ideals and the resolutions of monomial ideals
نویسندگان
چکیده
منابع مشابه
Splittable Ideals and the Resolutions of Monomial Ideals
We provide a new combinatorial approach to study the minimal free resolutions of edge ideals, that is, quadratic square-free monomial ideals. With this method we can recover most of the known results on resolutions of edge ideals with fuller generality, and at the same time, obtain new results. Past investigations on the resolutions of edge ideals usually reduced the problem to computing the di...
متن کاملFinite atomic lattices and resolutions of monomial ideals
In this paper we primarily study monomial ideals and their minimal free resolutions by studying their associated lcm-lattices. In particular, we formally define the notion of coordinatizing a finite atomic lattice P to produce a monomial ideal whose lcm-lattice is P , and we give a characterization of all such coordinatizations. We prove that all relations in the lattice L(n) of all finite atom...
متن کاملMonomial Ideals, Edge Ideals of Hypergraphs, and Their Minimal Graded Free Resolutions
We use the correspondence between hypergraphs and their associated edge ideals to study the minimal graded free resolution of squarefree monomial ideals. The theme of this paper is to understand how the combinatorial structure of a hypergraph H appears within the resolution of its edge ideal I(H). We discuss when recursive formulas to compute the graded Betti numbers of I(H) in terms of its sub...
متن کاملMonomial Ideals
Monomial ideals form an important link between commutative algebra and combinatorics. In this chapter, we demonstrate how to implement algorithms in Macaulay 2 for studying and using monomial ideals. We illustrate these methods with examples from combinatorics, integer programming, and algebraic geometry.
متن کاملAlexander Duality for Monomial Ideals and Their Resolutions
Alexander duality has, in the past, made its way into commutative algebra through Stanley-Reisner rings of simplicial complexes. This has the disadvantage that one is limited to squarefree monomial ideals. The notion of Alexander duality is generalized here to arbitrary monomial ideals. It is shown how this duality is naturally expressed by Bass numbers, in their relations to the Betti numbers ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2007
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2006.08.022